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New Brunswick, New Jersey

ABSTRACT

Computational issues associated with modeling and control of robots with revolute
joints and elastic arms are considered. A manipulator with one arm and pinned at one
end is considered to investigate various aspects of the modeling procedure and the
model, and the effect of coupling between the rigid-body and the elastic motions.

The rigid-body motion of a manipulator arm is described by means of a reference frame
attached to the "shadow beam," and the linear elastic operator denoting flexibility is
defined with respect to this reference frame. The small elastic motion assumption
coupled with the method of assumed modes is used to model the elasticity in the arm.
mmmdam%uphngihﬂlgw-body‘andrm-mwmmmear.
and-centatas-terms up to quartic in powers of thefarantudcs'of'thc'amedmodes. It
is shown that only terms up to quadratic in these model amplitudes need to be retained.

An tmportant aspect of the coupling between the rigid-body and the elastic motion Is
the centrifugal stiffening effect. This effect stiffens the elastic structure, as to be
expected on physical grounds, gives rise to a time-varying inertia term for the rigid-
body motion, and, in general, results in an elTective inertia term smaller than the rigid-
body inertia term. In fact, this reduction in. inertia-determines the Hmitatiorrof-the
srall. motion assumption. If the elastic behavior is excited sulliciéntly so"as tocause a
vanishing eflective rigid-body motion inertia term, one should either modtfy the
manipulator model, or consider the forcing profiles that excite the elastic motion least.
The Fourler series expansion of a few such profiles is examined to provide insight In

this regard.

Simulation results are presented for an elastic beam pinned at one end and free at the
other. and rotating in a horizontal plane, and control issues such as the order of the
model. number of sensors, and modal extraction are examined within this context. Itis
shown that the effect of centrifugal stiffening is pronounced on the rigid-body motion
during transition, and ignoring it in the control model leads to gross inaccuracies in
response. The effect of including varying amounts of flexibility on the response is

studied. -
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OBJECTIVE

To investigate modeling, control,
and computational issues associ-
ated with elastic manipulators

SCOPE

Revolute joints
Actuators at joints only
Shadow beam approach

Small elastic motion, and limit of
such an assumption

Nonlinear model
Control issues

Illustrative example
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Pinned - free link

Reference frame located at the pin
joint; describes rigid-body motion.
Elastic motion is defined with
respect to this frame

dn? = d@2 + (v/ dn)?

Notes: x is the position of the point in the undeformed configuration
The beam rotates in a horizontal plane
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u(x,t) is obtained by integrating
_rq1_ (9V.2.12
dg=[1 (ax) 7% dn

where
nx,t) = x + s(x,t)

C(x,t) = x — u(x,t)

On integration,

_ M, OV 2
(x = n- 12] (392 ] do
or
u(x,t) = — s(x,t) + 1/2J [(g_;)Z] do

s(x,t) : axial vibration term

Integral : results in centrifugal
stiffening term

Neglect axial vibration
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Elastic Displacement

u(x,t) = — u(x,t) by + v(x,t) by
Position

I= C(X,t) h] + V(X,t) b.z

Velocity
. _ _ du av :
L= - == b+ 5¢ by+ 06Xr

Kinetic Energy
K=1/2[f.1dm
Potential Energy
V= 1/2 [ “EI(x) (v)? dx
Lagrangian

L=K-V

Notes : () corresponds to partial derivative with respect to time, ()’
corresponds to spatial derivative, p is the mass per unit length, and EI(x) is the

flexural rigidity
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L= 1/2J'0Lp vVi+02v2i+2xv0+ x2 6%) dx

~ 12 J'OLEI(V”)de
N2 L X N2
-1/26 JO prO (v)“do dx

+ 1/2 jOL[— 1/2 jox—;?((v’)z)dc]zp dx

o L - x d n2
+ 1/29~0 pvJO dt((v))dc dx

L
0

~ 128 pv “O"(v')2do dx

A2 ¢ L X N2 2
+ 1/2 6 jo p/4[j0 (v)“do]° dx

Assumed Modes

N,
v(x,t) = .Z ¢ i(x) a;(t)

=1

¢;(x) : Admissible functions
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Define

mii= [, POi(x) ¢ (x) dx
kij= [, EI(x) 0;(x) 6](x) dx
si(x) = [ [0i(x) ¢(x) dx

Pjj = JOLP X 8;(x) dx

Sijkl = JOLSij(X) sk1(x) dx

Qijk = JOLP ¢ (%) s;(x) dx

r; = jOLp x ¢i(x) dx

Then,
e X ~n2 d _
Jo (V) X = Sij(x) a; aj

« L X, ,
o pX[JO (v)zdc]dx=pijaiaj

- L . xd . .
Jo [IO E’((V,)z) d6]2p dx = 4 Sijkl a; aj ax

IOLP v IOX%((V')Z) do ] dx = 2 gj 3 a; ag
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Substituting in the Lagrangian,

= 1/21,0%+ 1/2my 4 4+ 01, &
- 1/2[1(1] + (plj — mu)92] a; aj

+ 1/2 Sijkl a; aJ ay él + 92/8 Sijkl a; aj ar 4

+ 0 Qijk 3 aJ ap — 0/2 Jijk i a; élk
Example :
Beam parameters

Cross-section : 6 in x 3/8 in
Length = 3.6576 m (12 ft)
p= 4.015kg/m

ElI = 756.65 N . m

Admissible functions : Normalized
eigenfunctions of a pinned-free beam

— . 2
mij _8ij N k.. —(Di 61]

where §; is the Kronecker delta

Notes : The summation convention, ¥ ¥ mj a; a;= m;; a; a;, etc., will be em-
ployed for conciseness - i.e., repeated indices in an expression indicate summa-

tion over appropriate range.
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Natural frequencies and Centrifugal stiffening coefficients

i o P
j= 1 j= 2 j= 3
1 15.82 6.397 1.861 -0.366
2 | 51.282 1.861 17.905 6.195
3 | 106.983 -0.366 6.195 35.999
Coriolis terms, ik

i j k=1 k=2 k=3

1 1 -0.152 0.143 0.008

1 2 0.415 -0.144 0.169

1 3 0.077 0.347 -0.143

2 1 0.415 -0.144 0.169

2 2 -0.175 0.152 -0.117

2 3 0.883 -0.196 0.145

3 1 0.077 0.347 -0.143

3 2 0.883 -0.196 0.145

3 3 -0.178 0.171 -0.152

Other coupling terms S;j
Note: sjj1 = Sjik1 = Sijlk = Sjilk

i j k 1= 1 1= 2 1= 3

1 1 1 0.669 0.099 0.001

1 1 2 0.099 1.800 0.444

1 1 3 0.001 0.444 3.570
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1 2 1 0.099 0.275 -0.050
1 2 2 0.275 0.397 0.594
1 2 3 -0.050 0.594 0.901

1 3 1 0.001 -0.050 0.183
1 3 2 -0.050 -0.005 -0.074
1 3 3 0.183 -0.074 -0.113
2 1 1 0.099 0.275 -0.005
2 1 2 0.275 0.397 0.594
2 1 3 -0.050 0.594 0.901

2 2 1 1.800 0.397 -0.005
2 2 2 0.397 5.010 0.147
2 2 3 -0.005 0.147 9.94

2 3 1 0.444 0.594 -0.074
2 3 2 0.594 1.470 1.500
2 3 3 -0.074 1.500 3.160
3 1 1 0.001 -0.050 .183

3 1 2 -0.050 -0.005 -0.074
3 1 3 0.183 -0.074 -0.113
3 2 1 0.444 0.594 -0.074
3 2 2 0.594 1.470 1.500
3 2 3 -0.074 1.500 3.160
3 3 1 3.57 0.901 -0.113
3 3 2 0.901 9.94 3.160
3 3 3 -0.113 3.160 20.000

Notes : The magnitudes of the terms Qijk and sy are small. In addition, they
are multiplied by the cubic and quartic powers of modal amplitudes. Hence

they will be dropped from further development.
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Retaining terms only up to quadratic in
modal amplitudes,

L=1/2 (I~ (py— my) 2 aj) 62 + 1/2 myj &; &
- 1/2 ky; 3; @
The equation for rigid-body motion 1is
-C%'[(Io— (P~ my) 3 2j) 01=T
And the elastic motion is described by

m;; 8; + [ki;+ (pyj — My 0’1 a;= T ¢(0),
Measurements at x = 0

8, = 0+ v(0,t)

0, = 06+ V(0,1
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Choices for the control model

1. Ignore elastic effects completely

Control model : I é= T

0

9=91 é=él

2. Rigid-body model, with the sha-

dow frame angle properly
extracted

Control model : I 0=T
Q—_- (.)1 - V,(O,t)
= 0; — v(0,t)

3. A few elastic modes are
included, and the modal coordi-
nates are approximated

Control model:
d .
d_t[(Io - (pij - mij) aj aj) 0]=T
i,j < N, N, < N;

Notes : Ny is the number of modeled modes. N, is the number

of modes used for controller design. N; = 3 for the following
simulation results.
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4. Appropriate number of sensors
used to obtain accurate modal

coordinates.

N2= Nl

Control synthesis
Computed torque method

Pointwise-optimal control method
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Open-loop Maneuver
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Fig. 1 : Torque Profile for Open-Loop Maneuver
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Fig. 2 : Position Response of the Beam for the Torque
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Feedback Control
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Fig. 4 : One Flexible Mode Included in the Model
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Feedback Control, contd.
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Fig. 5 : Three Flexible Modes Included in the Model
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Fig. 6 : Comparison of Open- and Closed-Loop

434

Torques



_ 17 -

Effects of centrifugal stiffening

1.

Provides a strong coupling between
the rigid-body and elastic motion

Increases the stiffness of the struc-
ture

Reduces the effective rigid-body
inertia term. Can cause it to vanish
if the elastic motion is large. May
have to modify the model, or vary
the torque profiles.
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Torque profiles and their Fourier
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Computational Issues for Control of
multi-link flexible robot arm

1.

The dynamic model can be arrived
at by modeling each link indepen-
dently and imposing constraints at
the joints

The link geometry may not be sim-
ple

Sikl» dijk» M@y not be negligible, and
the control model may include all
the terms

The choice of admissible functions
for each of the links may be
different

Sampling rates - should not excite
elastic motion

Control input computation may pose
formidable burden.
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The above issues can be adequately
addressed by selecting pointwise-
optimal control law for control input
computations, where, the inputs can be
computed at least one time step ahead.
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Conclusions

1.

A complete model for control of a
flexible link is developed

Modeling issues are examined
within the context of an example

Several control issues are investi-
gated

It is shown that centrifugal stiffening
effect on rigid-body motion 1s
significant

There is a strong coupling between
rigid-body and elastic motions;
ignoring this coupling results in
gross inaccuracies in response.
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